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This issue of Trends in Neuroscience in Education offers some fresh perspectives on developmental
dyscalculia. Here we present an overview of different theoretical approaches to identifying and defining
developmental dyscalculia, and a consideration of critical measurement and experimental issues.
We note a series of important caveats that must be applied when interpreting the existing research base.
While there is currently no generally agreed upon functional definition of developmental dyscalculia
(DD), the papers collected here represent the wide range of educational and research issues that must be

considered when applying neuroscience techniques to the study of developmental disorders of number.
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1. Introduction

Mathematical skills are increasingly important if individuals are
to thrive in today’s technologically-oriented society. However,
evidence suggests that many adults in developed societies possess
quite immature mathematical abilities. A 2011 Department for
Business, Innovation and Skills survey in the United Kingdom found
that 49% of the adult population could only attain standards
comparable to 11 year-old children in mathematics (whereas 14.9%
achieved such standards in literacy). Furthermore, 23.7% of adults
reached only the standards typical for 9 year-old children (compared
to 7.1% for literacy). As may be expected from these figures, research
on mathematical learning problems lags well behind research on
literacy problems, and takes longer to affect educational instruction.
For example, during the period of 1985-2006 nearly 5 times as many
research papers were published on ‘dyslexia’ compared to ‘dyscalcu-
lia’ [51]. Hence, it is not surprising that there is no generally agreed
upon functional definition of developmental dyscalculia (DD). In fact,
conditions which may or may not be equivalent to DD are labelled by
many different names (Box 1). Here we provisionally define DD at
the widest possible phenomenological level. We define it as persis-
tently weak mathematical performance of developmental origin,
related to the weakness of some kind(s) of cognitive function
(s) and/or representation(s); appearing when concurrent motiva-
tion to study mathematics and access to appropriate mathematics
education is normal. Research suggests that most individuals who
are weak in mathematics do not have DD. Here, we will consider
DD at the levels of behavioural phenomena, cognitive functions
and neural underpinnings, pointing to important controversies in
research.

1.1. Behavioural phenomena (operational definition)
At the level of behavioural phenomena DD is usually defined

operationally as a condition where mathematical achievement is
(much) lower than average. Criterion validity is typically provided by

standardized mathematical tests. However, mathematics is a collection
of various competences, and is not a well-defined skill as in the case of
reading. Consequently, the content of different standardized tests of
mathematics can differ markedly. For example, some tests may rely on
the interpretation of verbal problems, while others rely on calculations
with Arabic digits. Test content always differs when tests are aimed at
different age groups. Thus, different standardized tests do not neces-
sarily measure the same ‘kind’ of mathematics and/or the same kinds
of skills supporting mathematics. This variability affects diagnosis.
Further, there is no agreement on the particular threshold or ‘cut-off
test score under which a child should be defined as having DD.

If DD is a specific weakness of mathematics, then false positive
diagnoses can only be avoided by testing whether other functions are
indeed preserved [48]. However, there is no agreement on the kind of
non-mathematical control variables which should be selected (e.g.
intelligence and/or reading), nor on whether discrepancy between
intelligence scores and mathematical test outcomes should be con-
sidered [51]. Indeed, while mathematical problems often appear on
their own [61,69], they are also frequently co-morbid with other
learning problems [43], especially with reading and spelling problems
[46,59]. These discrepancies raise important questions concerning
whether co-morbid states of DD are as typical (or even more typical)
forms of the disorder than ‘pure’ DD [44]. It is also important to
establish whether co-morbid states represent profiles with qualita-
tively different mathematical impairments relative to pure states;
whether they rely on the co-occurrence of independent cognitive
impairments; and whether they rely on causal relations between
impairments. The theoretical issue of whether co-morbidity is seen as
core to the disorder or it is allowed in the definition at all obviously
has strong implications for defining DD.

1.2. Prevalence
These uncertainties concerning which behavioural phenomena

should be considered central to DD naturally make it difficult to
establish prevalence rates for DD. Prevalence studies have used highly
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Box 1-Terms used to describe conditions which may or may not be
equivalent with DD.

Dyscalculia

Developmental Dyscalculia (DD)
Arithmetic-related learning disabilities (AD)
Arithmetical disability (ARITHD)

Arithmetic Learning Disability (ALD)
Mathematical Disability (MD)

Mathematics Learning Disability (MLD)
Mathematical Learning Difficulty (MLD)

variable cutoff criteria, ranging from the 3rd to the 25th percentile, and
studies differ in whether they have relied on control variables,
in which control variables were selected, or whether control variables
were considered at all. When control variables are thought to be
important for the definition of DD, then prevalence estimates are
affected by the intercorrelation of criterion and control variables.
Prevalence estimates from 17 studies range between 1.3% and 10.3%
(—2SD to —0.68 SD below the mean in terms of a normal distribu-
tion). The mean of these estimates is about 5-6%, and there seem to be
no consistent gender differences in DD (see review in [17]; especially
Table 1 and Fig. 1). Experimental studies examining the functional
basis of DD often ignore prevalence estimates and use very liberal
cutoff scores, sometimes selecting children below the 35th (—0.38 SD)
and 45th (—0.12 SD) percentiles as representative of low-achievement
mathematics groups (see Table 1 in [51]). Such cut-offs include
children within the normal range of performance. The extreme
variability of children included in different samples means that it is
difficult to compare experimental results across DD studies. Hence,
in order to be able to differentiate between qualitatively different
cognitive profiles, some researchers have classified children fitting
various levels of cutoff criteria into different groups (e.g. [25,51]).

1.3. Cognitive functions

This variability with regard to criterion validity (testing instru-
ment, cut-off score and control variables) contributes to the uncer-
tainty about which cognitive function(s) and/or which mental
representation(s) is/are affected in DD. One debate concerns whether
there are qualitative differences in the cognitive profiles of children
with DD [68]. DD may originate from the impairment or weakness of
a single cognitive representation or function [64]; it may result from
weakness in a constellation of multiple representations/functions, or
indeed, it may be an umbrella term, denoting mathematical weakness
of unrelated and/or variable functional origins [36]. Theories in adult
cognitive psychology and cognitive neuroscience typically follow a
modular view, preferring to identify a single function underlying a
condition like DD. On the other hand, developmental researchers
have shown that mathematical weakness appears in many forms.
Hence, search for a single underlying cause of DD may not be an
optimal strategy. As long as the underlying factors behind the various
kinds of mathematical weaknesses are not understood, it is simply
not possible to decide whether various weaknesses stem from the
same underlying condition.

The literature offers a wide range of cognitive functions which
may be impaired in DD. A popular view is that DD is the
consequence of the deficit of a core amodal [49] magnitude
representation often called the ‘number sense’ [15]. There are
various versions of this ‘core deficit’ hypothesis [7,55]. Other
researchers relate DD to impaired links between the magnitude
representation and number symbols [14,62]; or to suboptimal
automatic activation of the magnitude representation [63].
Yet others link DD to impairment in verbal and visual working

memory [6,23,24,31,53,54,77], impairment in spatial processing
[60,61], impairment in attentional function [3,30,77], impairment
in inhibitory function [5,6,20,77] and impairment in phonological
ability [78]. All these different cognitive functions seem to play
important roles in mathematics, and hence can be plausibly
related to DD.

It has also been proposed that the field should distinguish
between subtypes of DD depending on children's different math-
ematical profiles, which may be related to different cognitive
impairments. For example, some children show weakness in
mathematical fact retrieval (which provides shortcuts in both
simple and complex arithmetic; [69]), while others show imma-
ture procedural/strategy choices, and others appear to have
inefficient visuo-spatial manipulations [1,22,79,80]. Rubinsten
and Henik [64] suggested that the term ‘Mathematical Disabilities’
should be used as an umbrella term, while the term ‘DD’ should be
reserved for core deficits of the number sense. This suggestion
raises the question of whether DD should be conceptualised as
representing a quantitative extreme of the cognitive skills asso-
ciated with mathematical achievement (the tail of the normal
distribution), or whether it represents a discontinuous qualitative
difference between DD and typically developing children.

1.4. Heritability

DD is of developmental origin, that is, it is not acquired through
mental or physical events experienced by an individual who had
age-appropriate mathematical skill during an earlier period of life.
Rather, DD seems a deficiency of cognitive development that is
inherent to an individual. One suggestion is that such an inherent
deficiency has a genetic basis [37,72]. However, even the best-built
genetic system needs crucial environmental input to achieve its
potential. Hence, it is difficult to exclude the possibility that DD is
the result of environmental factors which were not forthcoming at
the appropriate time earlier in developmental history. Such factors,
for example motivational and emotional factors and/or inadequate
teaching, may be absent at the time of diagnosis, but may have
contributed to DD in the past. That is, inherent developmental
problems do not necessarily require genetic explanations but may
result from (unknown) suboptimal past environmental inputs.

On the other hand, DD shows familial aggregation, which may be
attributed to genetic factors [72]. However, besides genetic factors
familial cultural and parental attitudes towards mathematics can
probably also explain some familial aggregation effects [76]. In fact,
a study of twins found that 49% of monozygotic twins (who share all
of their genes) and 32% of dizygotic twins had DD, which points to
moderate genetic influence [44]. Similarly, a large-scale twin study
concluded that mathematical achievement is influenced moderately
by both genetic and environmental factors, and that mathematical
weakness is the quantitative extreme of the distribution of these
factors rather than some kind of discontinuous qualitative difference
[38]. Importantly, genetic explanations do not provide evidence for
the heritability of an isolated number-specific factor. Various basic
cognitive abilities, like overall memory capacity or speed of proces-
sing, may be under genetic influence, and all these factors can in
turn influence mathematical development. Therefore, in principle,
heterogeneous genetic influences on more than one cognitive factor
may affect mathematical performance.

1.5. A developmental perspective

A critical issue in developmental disorders is how to define
‘age-appropriate’ mathematical skill (see e.g. [18,28]). Is a diag-
nosis of DD meaningful if a child has age-appropriate mathema-
tical skills until age 7, but later shows signs of learning disability,
even though there is no indication of mental/physical trauma [47]
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Such questions emerge because we do not yet understand the
complexities of developmental change. Yet developmental change
is a central issue for mathematics, where skill learning requires the
incremental acquisition of several layers of information, which
must be built on top of each other during primary and secondary
schooling. Children continuously learn new information about
mathematics that radically change their understanding, change
their solution strategies and change the representations that are
mobilised [71,73,83]. Hence, while various individual develop-
mental trajectories are possible [79], at least some aspects of
mathematical development require a strict succession of learning
stages. Suboptimal learning pathways can likely trigger a ‘cascade
of mathematics failure’ especially in low socio-economic status
children which makes early interventions especially important
([34]; p66; [29]).

Further, a certain cognitive capacity (for example, good verbal
and spatial memory) may not be relevant for mathematics learn-
ing until (say) age 7, but subsequently may become absolutely
indispensible. In such cases, DD may appear after such a cognitive
mechanism becomes of central importance for mathematics per-
formance. Temporal variability in development also leads to
instability or uncertainty in DD diagnoses. For example, a child
who fits DD criteria in one year may show better performance the
following year, taking them above the threshold for diagnosis.
In such cases poor performance may be attributed to transient
factors such as motivational factors, or to temporarily delayed
development, rather than to a central and persisting cognitive
impairment. Studies suggest that about 50-60% of children with
DD have a persistent condition [47,70,74]. Around 95% of children
with DD show long-term weak mathematical performance [70].

Importantly, even the subtype of DD can show temporal
variability within individuals [74]. Hence, it is critical to conduct
longitudinal studies, replicating test results at different time
points, to demonstrate the persistent nature of DD and the
stability of the different proposed subtypes of DD. Longitudinal
assessments (which are very expensive) are also important
because the analysis of growth curves enables the determination
of whether DD is best understood as a persistent developmental
delay, or is better captured by theoretical models suggesting
qualitatively different development [47]. Overall, a truly develop-
mental perspective of developmental disorders requires a full
description of typical and atypical developmental trajectories [35].
Models based on adult data are at best insufficient with respect to
explaining the emergence of DD and the cognitive complexities of
mathematical learning.

1.6. Neuroimaging in DD

To date, there are surprisingly few studies examining the brain
correlates of DD. A popular theory, originating from neuroscience
studies, is that DD is related to impairment of the core magnitude
representation. This theory is often called the deficient number
module deficit theory [7,55]. This core number module or ‘number
sense’ is thought to reside in the bilateral intraparietal sulci of the
brain (IPS). Some notes of caution are appropriate, however. While
children with DD do indeed seem to show structural abnormalities
in the parietal cortex [33,58,66], the functional significance of
these findings is not yet clear. Firstly, the tests and tasks used in
some behavioural and neuroimaging studies lack clarity with
respect to the functions that they measure, and their criterion
validity is unclear. Various papers may label functionally dissimilar
measures as ‘number sense’ measures (for example, speeded dot
pattern comparison, symbolic number comparison, counting dots,
positioning numbers on a number line). Hence, the relationship
between theoretical labelling and the actual measures used can be
questioned in some cases. Secondly, some tests thought to

measure core capacity, such as non-symbolic dot-comparison
tasks, can be strongly affected by visual stimulus properties which
confound a clear interpretation of performance [26,27,86]. Thirdly,
in studies where non-numerical control conditions are lacking,
there is a need for caution when drawing number-specific con-
clusions on the basis of visually-loaded tests. Fourthly, with regard
to brain substrates, 4 out of 6 functional MRI studies investigating
the deficient number module/core IPS deficit hypothesis did not
provide supporting neuro-imaging data [12,39,41,42,87]. Further,
5 out of 6 of these studies did not provide supporting behavioural
data (ibid and [52]), indeed, only 1 out of the 6 studies provided
both supporting behavioural and imaging data [57]. Electro-
encephalographic (EEG) investigation of DD could also not
find evidence for a deficient core magnitude module [75,88].
A further study demonstrated altered IPS function in children
with DD relative to controls in a working memory task [58]. As
structural and functional brain differences between DD and con-
trol children appear in various brain regions besides the IPS
[12,39,42,52,65,66], the absence of sufficient studies make it
difficult to properly evaluate the deficient number module/core
IPS deficit theory. Indeed, a whole network of brain regions seems
to be affected in DD, rather than a single area [21]. This is in fact
more consistent with the variability of cognitive impairments
observed in DD.

With regard to evaluating the deficient number module/core
IPS deficit hypothesis, it is also important to point out that the IPS
is involved in many different cognitive functions in addition to the
proposed number sense. The IPS seems to be involved in most
cognitive functions that are important for mathematics, like working
memory [10,11,19,45,81], attention [10,13,67,82], inhibitory function
[8,50] and spatial processing [85]. Therefore, impairment of any of
these important functions could plausibly explain IPS abnormalities
in DD [87]. Consequently, when IPS effects are demonstrated with
no supporting behavioural data, it cannot be concluded that these
demonstrations support the deficient number module IPS
deficit theory. Such conclusions are in fact invalid ‘reverse infer-
ences’, because the inference that the imaging findings relate to
the cognitive functions that are assumed to be tested may not be
justified [56].

This inferential point also highlights a frequent implicit
assumption in neuroimaging studies, which is that brain data are
stronger than behavioural data (see [84]). Yet brain data are
typically not interpretable if behavioural data are missing. Finally,
the frequent causal interpretation of brain data should be noted.
Brain and behaviour are interdependent. Whatever we do beha-
viourally can be traced back to brain function, therefore finding a
brain difference between two groups of participants with different
behavioural characteristics (e.g. different maths scores) does not
imply that the neural difference is causal in the behavioural
difference. It may well be that a third factor (e.g. reduced maths
tuition in the past in the weaker group) caused both the brain and
the behavioural differences. In this example, too little tuition may
inhibit the optimal development of certain parts of the brain and
may lead to worse performance. That is, the brain difference itself
may be the consequence of differences in tuition and not an
independent (primary) cause of the differences in mathematical
behaviour. Hence, merely detecting a brain difference is not a valid
basis for concluding that a certain brain area is damaged or
dysfunctional for biological reasons, and that this is the cause of
a behavioural difference.

1.7. Intervention
Persistent mathematical weakness is often labelled ‘Mathema-

tical Disability’. The 2010 Equality Act of the United Kingdom
defines disability as ‘a physical or mental impairment that has
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a substantial and long-term negative effect on your ability to do
normal daily activities’. If DD is an example of such a serious
inherent handicap, then the most important question for educa-
tional neuroscience is whether this handicap can be remediated by
appropriate interventions. In fact, theories proposing the lack of
a core module may suggest to educators an irreversible condition.
At the moment there are very few intervention studies with mixed
results on the impact of training magnitude comparison (see [9]).
Other studies investigated training effects in response to working
memory tasks [32,40].The study of individual differences is parti-
cularly important for optimising interventions, and indeed a focus
on individual differences also offers a strong test of theories.
For example, a theory may look convincing in group studies, but
may prove inefficient at the individual intervention level. Finally, it
is important to note that intervention efforts may be hampered by
participants' attitudes towards maths, for example mathematics
anxiety, which results in participants avoiding mathematics-
related situations [2,18]. Attitudes of pupils and teachers may be
particularly important when it comes to explaining gender differ-
ences in mathematics [4,16].

2. Conclusion

This issue of Trends in Neuroscience and Education presents
several alternative theoretical approaches to DD. We hope that these
fresh perspectives will bring the field closer to an accepted functional
definition of DD. Meanwhile, it is clear that operational diagnoses
should rely on the criterion validity provided by standardized tests.
Indeed, it is advantageous to use more than one test, aiming at
different content and to record performance in a range of control
variables as well, so that generalisability across samples can be
assessed. Conclusions are stronger if diagnoses are confirmed by
longitudinal replication. A particularly important goal for the field of
DD is to describe individual differences across typical and atypical
developmental pathways using longitudinal data and the wide range
of psychological constructs implicated in DD. Distinctions are
required between (biological) markers/correlates/consequences of
DD and (biological) causes of DD. Behavioural and imaging studies
should test theories against each other rather than focus on a single
theory, and emotional, motivational and anxiety-related aspects of
mathematics also need to be considered.
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