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a b s t r a c t

Low numeracy skills have a negative impact on the employment prospects and mental and physical
health of individuals, and on the economic status of countries. Clearly, this is a high priority area where
efficient strategies for intervention can lead to a better outcome, especially when implemented at an
early age. We discuss here present and future directions for intervention. The development of such
interventions has been based on the study of numerical difficulties through methods ranging from
standardized tests to behavioral measures to neuroimaging. The intervention techniques range from
group-based interventions targeted at strengths and weaknesses in specific components of arithmetic, to
educational computer-games, to non-invasive brain-stimulation. We discuss the principles behind each
method, the current evidence, and future directions.

& 2013 Elsevier GmbH. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2. The componential nature of arithmetic: Implications for targeted intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3. The effect of intervention on atypical neural responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4. Neural underpinnings and intervention using EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5. Neural underpinnings and intervention using fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6. Using transcranial electrical stimulation to improve cognitive training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
1. Introduction

Mathematical achievement is one of the foundations for a
thriving society. Approximately 20% of people have low numeracy
skills [23], and depending partly on diagnostic criteria, 3–13% of
people are considered to have a more serious specific disability
with numbers, a condition called developmental dyscalculia (DD,
. All rights reserved.
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for a discussion on definition see [83]), or mathematical learning
disability (MLD) [4,10,30]. Numerical difficulties are linked to lack
of progress in education, increased unemployment, reduced salary
and job opportunities, and additional costs in mental and physical
health [22,69]. Many of these increased risks operate over and
above those associated with social and educational disadvantages
in general, including those associated with literacy difficulties or
lack of qualifications [31,69]. Furthermore, the effects of numeracy
skills expand beyond the life of the individual and affect society in
general [31]. The current review aims to describe the current state-
of-the-art of interventions to improve numerical skills, based on
cognitive, educational and neuroscientific research evidence on
the nature of mathematical cognition and learning.
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2. The componential nature of arithmetic: Implications for
targeted intervention

One way in which neuroscience influences education is through
the application of the findings of brain-based research to guide
approaches to teaching and intervention. Although such applications
are still at a relatively early stage, and some are based on ‘neuro-
myths’ rather than solid evidence [28], findings from neuroscience
are beginning to inform behavioral and cognitive interventions
[7,29]. We will focus here on the componential nature of arithmetic.
The most striking evidence for the functional separability of different
components comes from neuropsychological studies of acquired
dyscalculia [11,18,19]. Functional brain imaging techniques provide
converging evidence that different components of arithmetic can
involve different brain areas and networks [96].
Box 1–Catch Up Numeracy

Children in the project receive interventions from trained
teachers or teaching assistants during two 15 min sessions
per week, typically for one school term.

The components are as follows:

(1) Counting verbally (counting verbally from 0 or 1;

counting on from a given number; counting back from

a given number).

(2) Counting objects (counting objects; order irrelevance;

repeated addition of objects; repeated subtraction of

objects).

(3) Reading and writing numerals and number words.

(4) Handling tens and units (number comparison; adding

tens and units; subtracting tens and units).

(5) Ordinal numbers (stating the ordinal position – e.g.

second, fourth, etc – of a bead within a bead string).

(6) Word problems.

(7) Translation between different formats (i.e. between

quantities of objects and number words or numerals).

(8) Derived fact strategies (including the use of commu-

tativity of addition and the inversion principle for

addition and subtraction to derive unknown number

facts from a given number fact).

(9) Estimation of set size, and of answers to arithmetic

problems.

(10) Remembered number facts.

Each child is assessed individually by a trained teacher/
teaching assistant using ‘Catch Up Numeracy formative
assessments’ which the member of staff then uses to
complete the ‘Catch Up Numeracy learner profile’. This
personalized profile is used to determine the entry level for
each of ten Catch Up Numeracy components and the
appropriate focus for numeracy teaching. Children are
provided with mathematical games and activities targeted
to their specific levels in specific activities. Where possible,
these games and activities involve the use of materials that
are commonly available in schools.

Each 15-min teaching session includes (i) a review and
introduction to remind the child of what was achieved in the
previous session and to outline the focus of the current
session; (ii) a numeracy activity; and (iii) a linked recording
activity where the child records the results of the activity in
oral, written, and/or concrete fashion, and where the child
receives focused teaching related to their performance in the
activity and to any observed error.
The componential nature of arithmetic is important in planning
and formulating interventions with children with arithmetical
difficulties. Interventions that focus on the particular components
with which an individual child has difficulty are likely to be more
effective than those which assume that all children's arithmetical
difficulties are similar.

Systematic development of targeted programmes for children
with mathematical difficulties began only recently [86,95].
These programmes are highly intensive, and involve approxi-
mately 30 min of individualized intervention per day. They are
generally targeted at children with severe difficulties: approxi-
mately the lowest-achieving 5%. However, they exclude many
children with less severe numeracy difficulties that may never-
theless have a serious practical impact on their lives but for whom
intensive intervention may not be a practical or cost-effective
possibility. In contrast, Catch Up Numeracy is an intervention
based on the ‘Numeracy Recovery’ scheme [20], which applies to
primary school children with moderate mathematical weaknesses.
It is a less intensive, but still highly targeted, intervention [21,37]
(Box 1).

The results so far indicate that participants who received the
Catch Up intervention improved more than twice as much in
Number Age on a standardized test as expected from passage of
time, and made significantly higher ratio gains than controls who
received non-targeted mathematical intervention (Fig. 1). Thus, a
behavioral-targeted intervention program based on cognitive and
neuroscientific principles of the targeted cognitive ability can lead
to successful improvement.

In the next section we will discuss the application of neuroima-
ging to assess the effect of intervention on the neural substrates of
atypical numeracy.
Fig. 1. The effect of the Catch Up intervention program. In this study [37], 395
children received the Catch Up intervention program, which was based on the
‘Numeracy Recovery’ scheme [20] in collaboration with Catch Ups (a not-for-profit
UK charity). There were two smaller control groups: (1) Matched-time individua-
lized mathematics intervention group (n¼50). This group involved reviewing work
done in the school lessons and was not specifically targeted to assessed individual
strengths and weaknesses. (2) No intervention group, except for the usual school
instruction (n¼48). All children were given a number screening test before and
after the intervention. At the start, participants’ mean age was 104.97 months
(SD¼13.6). Their mean mathematics age (mathematical achievements based on
their age) was 96.46 months (SD¼14.66). The groups did not differ in chronological
age, or in mathematics age (ps40.35). The children who received the Catch Up
intervention made significantly higher ratio gains (months gained in mathematics
age divided by the number of months between initial and final testing) than either
of the other groups as indicated by a significant effect of group (F(2490)¼14.67;
po0.001), and post-hoc tests. A detailed account of the program and of an
evaluation of its effectiveness is given by [37].



Fig. 2. Summary of deficient brain function (pink circles), gray matter (green squares), white matter (yellow stars), and brain metabolism (blue triangle) in children with DD.
Reported deficits include a variety of brain regions, however, there seems to be consistent evidence that DD is associated with deficits in the parietal lobes (marked in white)
which host core regions for numerical understanding. (Brain templates by P.J. Lynch and C.C. Jaffe). Reproduced from [55]. Brain Correlates of Numerical Disabilities.
In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford Handbook of Numerical Cognition: Oxford University Press, with permission from Oxford University Press.
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3. The effect of intervention on atypical neural responsiveness

Children with MLD or DD are exhibiting behavioral impair-
ments as well as atypical brain activity and anatomy [55] (Fig. 2).
In this section we will discuss how intervention administered in a
game-like fashion (Box 2) can affect behavior as well as brain
functions. We will offer examples both from electroencephalogra-
phy (EEG) and functional magnetic resonance imaging (fMRI),
which provides good temporal and spatial resolution as to where
activation occurs in the brain, respectively (Box 3).
4. Neural underpinnings and intervention using EEG

Electrophysiological investigations into basic numerical abil-
ities typically focus on late parietal positivities (positive-going
deflections in the P2 and P3 time window) that are assumed to be
reflections of quantity-processing functions in infants, children,
and adults [17,39,40,43]. For instance, during numerical compar-
ison tasks larger amplitudes of the late parietal event-related
potentials (ERPs) were found in response to large compared to
small numerical distances (e.g., comparing the numbers 2 and
8 vs. the numbers 2 and 3), both in adults [70,88] and in younger
populations ([34,78,84]; but cf. [38,61]).

Previous studies have reported atypical distance-related mod-
ulations of these late positive-going ERP components in adoles-
cents with DD [78] and in children with MLD [35] during
numerical comparison tasks, when compared to age-matched
typical achievers. The amplitudes of the late posterior positivities
are commonly assumed to be related to neural activity primarily in
inferior parietal regions (e.g., [17,34,78]), which have been sug-
gested to play a causal role in numeracy [15].
Using ERP measures and standardized diagnostic measures to
assess the effects of remedial training for elementary school
children with MLD, a recent intervention study focused on
training-related changes in groups of second and third graders
[93]. The training was based on a highly effective intervention in
third-grade children with DD [49]. The intervention program is
theory-based, organized into semi-hierarchical modules, and
focuses on the explicit teaching of basic numerical skills (e.g.,
semantic number knowledge) and arithmetic conceptual knowl-
edge (e.g., understanding of arithmetic operations and principles).
Over a 9-months period training sessions were offered once a
week for groups of 2–6 children with each session lasting about
90 min.

Analysis of the data from groups of children with MLD who
either took part in the numeracy intervention (intervention group)
or underwent a reading and spelling training (low achieving
controls), and a third group of age-matched typical achievers,
revealed changes that reflect gains on typically achieving peers in
diagnostic measures [93], as well as electrophysiological and
behavioral parameters for the intervention group (Fig. 3). Adopting
a well-documented experimental design for the EEG part of the
study [5], the children were presented with symbolic and non-
symbolic approximate addition tasks before (t1) and after (t2) the
intervention phase. At t1, the typical achievers showed signifi-
cantly larger amplitudes of the critical ERP components than both
groups of low achieving children, which is consistent with the
results of previous electrophysiological studies [35]. However, the
group of children who took part in the numeracy intervention
program showed a marked shift in the amplitudes of the late
positive-going waveform (Fig. 3, [94]). This suggests that the
intervention did not only affect children's behavioral performances
as assessed by standardized diagnostic tools [93], but changes on



Box 2–Computer-based Interventions

As the development of each child’s numerical abilities follows
different trajectories and is intertwined with the development
of other cognitive domains, a high grade of individualization
is needed. Adaptive educational computer-based training can
contribute to these requirements. Computer-based interven-
tion can be designed to adapt for cognitive or performance
profiles and provides intensive training in a stimulating
environment. In combination with the fact that the computer
is an emotionally neutral medium, it may also foster
motivation and enhance positive self-concepts as every child
gains feelings of success [3,79]. Moreover, computers are an
attractive medium for children and seem to be effective when
trainings are sensibly constructed [25,58]. However, it has to
be kept in mind that computers cannot replace teachers or
therapists, but interactive games can form helpful tools for
successful remediation.

Regarding the math intervention, only a few computer-
based trainings have been evaluated scientifically:

The training called “Number Race” is based on principles
for remediation of DD and focuses on quantity representation
and the association between number and space [91]. Evalua-
tion indicated a significant improvement in basic numerical
cognition, but the effect did not generalize to counting or
arithmetic ([72,90,92]).

“Elfe and Mathis I” is a recently developed computer-
based program which trains basic numeric capabilities,
arithmetic and geometry [59]. The program is aligned to the
school curriculum and its evaluation demonstrated a higher
increase in mathematical competence in the training group
compared to matched controls.

Another computer-assisted instruction (CAI) to enhance
number combination skills has been presented by Fuchs et al.
[27]. The training was effective in improving addition but not
subtraction, and no transfer to arithmetic story problems
occurred.

Finally, the training, “Rescue Calcularis,” discussed in the
text, has been further developed. The new extended version
is called “Calcularis” and includes a variety of games
designed in line with current neurocognitive concepts of
mathematical development, insights on DD and general
learning principles [46,47]. The innovation of Calcularis is
the use of an adaptive control algorithm which enables
individual adjustment on the difficulty level as well as the
choice of appropriate games. Evaluation showed that chil-
dren benefited from the training regarding number repre-
sentation, and addition and subtraction skills [89].

Box 3–Brain Imaging Methods

Cognitive neuroscience combines strategies of cognitive
psychology with different methods to examine brain struc-
ture or brain function. Thanks to these modern brain imaging
techniques, we are able to generate high resolution anato-
mical images of our brains, examine fiber tracts, gain
metabolic insights, or observe brain activation while we are
performing a task.

Magnetic resonance imaging (MRI)
MRI produces brain images non-invasively by a powerful

magnet and radio-frequency. Different MRI acquisition meth-
ods provide information about various aspects of our brains.
The recording of high resolution anatomical brain images
allows to differentiate between gray and white brain matter
and to investigate focal differences in morphometry. Alter-
natively, DTI enables the measurement of the integrity of
fiber connections between different brain regions and MRS
measures brain chemistry to study changes of various brain
metabolites. Finally, fMRI uses the change in oxygen levels of
the blood in active brain areas to create images of brain
regions that are active during a specific task.

Positron emission tomography (PET)
PET-imaging enables the visualization of biochemical and

physiological functions of the brain. A radioactive tracer is
injected into the blood system. Areas of high radioactivity
indicate high amounts of radioactive-labelled oxygen, and
therefore are associated with brain activity; similar to the
principle of fMRI, it is assumed that active regions are flooded
with oxygenated blood.

Near infrared spectroscopy (NIRS)
Near infrared light is shined through the head, travels

through the outer layers of the brain, and is measured by a
nearby receiver as it leaves the head. By measuring the
quantity of returning photons, one can infer the spectral
absorption of the underlying tissue and make some conclu-
sions about its average oxygenation and deoxygenation.
Therefore, NIRS can be used for non-invasive assessment of
brain function by detecting changes in oxygen concentrations
in the blood which are associated with neural activity.

Electroencephalography (EEG)/ Magnetoencephalography
(MEG)

Electrophysiological methods register the electrical activity
of neurons non-invasively. Depolarisations of synchronously
active neurons create electrical and magnetic fields that can
be recorded at the scalp. While EEG measures the changes of
the electric field with electrodes placed on the scalp, MEG
records magnetic field changes by an arrangement of super-
conductive coils. In contrast to fMRI and PET, which provide
high spatial resolution but lower temporal resolution,
electrophysiological methods measure across larger regions
of the brain but can detect changes of brain activation in the
millisecond-range.
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the behavioral level were accompanied by differences in brain
functioning as assessed by EEG-measures. However, since ERPs
lack the necessary spatial resolution, it is unclear whether the
effects can be related to improvement in brain regions that were
initially impaired, or whether other brain regions have been
recruited to compensate for atypical brain organization.
5. Neural underpinnings and intervention using fMRI

In the last few years a clearer picture has emerged of functional
processes in the typical adult and child brain during number
processing and calculation, by means of contemporary brain
imaging techniques (Box 3). However, only a small number of
imaging studies have addressed the question of neural correlates
of atypical development in DD. Nevertheless, a recent meta-
analysis has emphasized the neural aspects of DD [51]. Convergent
evidence suggests that differences are found primarily in the
intraparietal sulcus (IPS) and the superior and inferior parietal
lobule, which are known to be core regions for numerical and
mathematical processing. However, aside from parietal areas,
other cortical and subcortical regions that contribute to numerical
cognition can also be associated with mathematical difficulties.
Such results include reduced brain activation found by fMRI
[56,65,71] or EEG [35,78] and atypical brain metabolism by
magnetic resonance spectroscopy (MRS) [60], as well as reduced
gray matter volume or deficient fiber connections measured by
morphometric MRI [74] and diffusion tensor imaging (DTI) [75].
Moreover, compensatory mechanisms have been observed in DD
children; these are usually characterized by stronger recruitment
of supporting areas associated with working memory, attention,



Fig. 3. Panel (a) gives an overview of stimulus-locked ERPs at recording site P8 for
the three groups of children [intervention group: blue; typical achievers: black; low
achieving controls: gray]. Pre- [solid lines] and post-results [dashed lines] are
plotted for the mean grand averages over both experimental conditions, i.e., the
nonsymbolic and symbolic approximate calculation tasks. The relevant ERP
component is highlighted, and the topography of mean difference potentials is
shown for the critical time window and contrast (i.e. typical achievers minus
intervention group at t1). Panel (b) specifies diagnostic [bluish bars, with higher
values indicating better performance levels; [48]], behavioral [greenish bars; error
rates in %] and ERP parameters [reddish bars; mean amplitudes in μV, 300–500 ms
after stimulus onset] for both points in time [t1, t2]. Asterisks denote Bonferroni-
corrected levels of statistical significance of differences between pre- and post-
testing results. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Box 4–Types and Mechanisms of Transcranial Electrical
Stimulation

Transcranial direct current stimulation (TDCS) involves the
application of a constant electrical current. Studies on
animals and humans have found that the induced changes
in tissue excitability vary with current polarity. Anodal
stimulation pushes neural resting membrane potentials
closer to the activation threshold and therefore increases
tissue excitability, while the reverse polarity, cathodal
stimulation, inhibits cell firing and decreases excitability
[26,68]. Most of the studies so far found that anodal
stimulation improved human performance, while cathodal
stimulation impaired human performance [14,44].

The long-lasting effects of TDCS are protein synthesis-
dependent and are accompanied by several mechanisms
including the modifications of intracellular cyclic adenosine
monophosphate (cAMP) and calcium levels [33], brain-
derived neurotrophic factor [26], and activation of adenosine
A1 receptors [63] and therefore share some features with
long-term potentiation and long-term depression [12,66].
FMRI experiments in humans have found that TDCS can alter
local and remote brain activation [36,52]. MRS studies found
change the local concentration of GABA and glutamate [81],
which are critically involved in learning and memory [80].

Transcranial random noise stimulation (TRNS) typically
involves the generation of random ‘samples’ of alternating
electrical current at a rate of several hundred times
per second. These samples are randomly assigned current
amplitudes, which are normally distributed around a direct-
current component of 0. The random fluctuation of these
sample currents between positive and negative amplitudes
generates the electrical ‘noise’ that cortical regions of interest
are exposed to. The technique is preferred over TDCS for its
higher cutaneous perception threshold [1], making it easier to
maintain experimental blinds, and for its oscillatory rather
than direct current, which ensures that application is
independent of polarity (i.e. anodal and cathodal) [13].

Although the mechanisms underlying TRNS are less well-
studied than TDCS, and have been attributed both to
stochastic resonance or the induction of sodium ion influxes
[85], this technique has been shown to enhance cortical
excitability. The effect of TRNS has been suggested to be
facilitatory at both electrodes. Moreover, compared to anodal
TDCS, high-frequency TRNS (100–640 Hz) yields more power-
ful results [24].

Fig. 4. Combination of wireless TES and cognitive training using a video-game. In
this example, a participant receives stimulation to the dorsolateral prefrontal
cortex while being trained on fractions. In this training the fractions need to be
mapped on a horizontal line (cf. [54]) by moving her body to the respective location
between two anchors (zero and one). Body movements are detected using a
motion-detector sensor [64].
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monitoring, updating or finger representation [50,57]. Such an
increased need for additional supportive functions might be
explained by underdevelopment of number representations, and/
or a failure in automatization of access to these representations.
Aberrant brain activation, structure or metabolism in childrenwith
DD has not yet been integrated into the diagnose, but studies in the
field of ADHD and reading pointed to the promising potential of
combining behavioral measures with neuroimaging markers to
improve diagnostic accuracy or to predict further outcome [8,9,76].

However, the human brain is a highly plastic organ and ade-
quate stimulation is able to induce structural as well as func-
tional changes. A 5-weeks computer-based intervention “Rescue



Table 1
Overview of the different interventions described in the current review, including sample size, age, length of the intervention, and effect sizes. Note that in the case of effect size it is not accurate to compare the different
interventions, as the different interventions involved different populations, age, effects, and the intervention length varied. The reader is referred to Ise, et al., [41] for a meta-analysis which includes other types of training not
discussed here. N/A notes the inability to conclude whether the intervention enabled the individuals to improve their performance and thus catch up with their peers.

Type of
intervention

Sampe
size

Age (in
years)

Length of
intervention

Country Randomization Single-
blind

Double-
blind

Control
group

Transfer
effect

Catching up the
difference with
peers

Effect size (Cohen d’)

Catch Up Numeracy
educational
intervention for
children [21,37]

n¼440
(into
3 groups)

6–10 4 months UK No Yes No Yes Yes Yes Number Age gain: d¼0.47 (Intervention vs. Matched Time Control);
d¼0.55 (Intervention vs No-Intervention Control)

Remedial training
for children with
dyscalculia [93]

n¼64
(into
5 groups)

7–11 9 months Germany No Yes No Yes Yes Arithmetic skills (HRT 1-4 ; [32]): d¼0.84; Visuo-spatial skills (HRT 1-4 ;
[32]): d¼0.63

Rescue Calcularis
[54]

n¼32
(into
3 groups)

8–11 5 weeks Switzerland Yes No No Yes, but only
for children
with
dyscalculia

Yes in linearity and
variability of
arabic digit
representation

positive effects of training (pre vs. post) on: Number line task:
dyscalculics d¼1.08, controls d¼1.15; Addition & Substraction:
dyscalculics d¼0.36, controls d¼0.47

Calcularis [89] n¼32
(into
2 groups)

8–11 6 weeks Switzerland Yes No No Yes Yes N/A positive effects of Calcularis vs. control group: Addition d¼0.31;
Subtraction d¼0.39; Number line task 0-10: d¼0.28; 0-100: d¼0.18;
0-1000: 0.15; Estimation d¼0.29; Subitizing d¼0.08; Heidelberger
Rechentest [32]: Addition d¼0.16; Subtraction d¼0.52

Number Race
[91,90]

n¼9
(into
1 group)

7–9 10 weeks France No No No No No N/A positive effects of training (pre vs. post) on: large addition problems
d¼0.33; negative effects of training (pre vs. post) on: small addition
problems d¼1.59

Elfe and Mathis I
[59]

n¼130
(into
4 groups)

7–9 10 weeks Germany No No No Yes N/A N/A Math skills: d¼0.59 1st graders; d¼0.62 2nd graders

CAI [27] n¼33
(into
2 groups)

1st
graders

18 weeks USA Yes No No Yes No N/A positive effects of CAI vs. spelling training: Addition d¼0.49;
Subtraction d¼0.02; negative effects of CAI vs. spelling training: Story
problem d¼0.06

TES [16] n¼15
(into
3 groups)

20–22 6 days UK Yes Yes No Yes No N/A Numerical automaticity: d¼1.09

TES [42] n¼19
(into
3 groups)

20–31 6 days UK Yes Yes No Yes No N/A Learning rate: d¼0.85; Numerical automaticity: d¼0.55

TES [77] n¼51
(into
4 groups)

18–28 5 days UK Yes Yes Yes Yes Yes N/A Learning rate: d¼0.89 (drill learning), 0.77 (calculation learning);
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Box 5–Outstanding Questions

1. Might the intense intervention and great emphasis on

improving a given cognitive ability have a positive effect

on other mental faculties as well? It seems plausible that a

positive learning experience has the potential to improve

general attitudes towards learning by enhanced confi-

dence and motivation. However, could an intense inter-

vention have also a negative effect on a non-trained

ability? The latter might occur due to a shift of metabolic

consumption and neurochemical modulation caused by

the intervention, which changes the respective involve-

ment of different brain areas.

2. What are the long-term effects of the intervention

programs? Do the students maintain the level displayed

at post-intervention assessments, do they improve even

further improve, or do they show a decline in perfor-

mance? May the degree of such a decline, if one occurred,

be affected by the type of intervention (e.g., computer-

based vs. personal tutorials), or is it more linked to

individual characteristics? Will TES be able to elongate

and maintain the positive effect of intervention?

3. What are the cognitive and biological mechanisms that

make computer-based cognitive training a successful tool

for intervention? For example, might the attractiveness,
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Calcularis” was developed with the aim of improving number
representations and strengthening the links between numbers
and spatial processes on the internal mental number line [54].
Results have indicated that children with and without DD
improved their spatial number representations and arithmetical
abilities. This highlights the importance of a precise mapping of,
and automated access to, the mental number line for adequate
development of calculation skills.

Additionally, the training resulted in a modulation of brain
functions. FMRI depicted a reduction in the recruitment of relevant
brain regions after the training, including mainly frontal areas,
bilateral IPS and the left fusiform gyrus. A decrease of brain
activation in these regions and particularly of the frontal lobe is
assumed to reflect automatization of cognitive processes neces-
sary for mathematical reasoning [96]. In a follow-up examination
5 weeks after training, a significant increase of activity in parietal
areas was found in children with DD. Since the IPS is known to
play a pivotal role in number representation, these results sug-
gested that time for consolidation after training was needed to
establish neuronal representation [54].

In conclusion, domain-specific game-like interventions are
associated with neuroplasticity in functional circuitry that is
impaired in children with DD and MLD, and furthermore, they
can transform brain activation that is atypical in respect to time
and localization, into typical brain activation.
engagement and reward-based nature of this training act

on the dopaminergic system that is involved in plasticity

([62].

4. What is the temporal dynamic between behavioral and

brain changes due to intervention? Do behavioral changes

precede changes in physiology or the other way around?

5. Intervention efficacy: Which socio-emotional, cognitive,

neural or genetic modulating factors may affect interven-

tion efficacy? How is the efficacy of cognitive intervention

and TES in children and adults influenced by factors such

as age, individual differences in cognitive abilities [87], or

level of education [6], and specific genes [2].

6. Which intervention methods (cognitive, neuronal stimula-

tion, etc.) and which combination of methods are most apt

to exert positive intervention effects? Moreover, some-

times interventions improve performance on a specific

task, but do not transfer to similar tasks [72]. Can these

methods or their combination increase the likelihood for a

transfer effect? Is there a systematic relation between

intervention efficacy, neural changes and severity of

mathematical difficulty?
6. Using transcranial electrical stimulation to improve
cognitive training

So far, we have discussed the effect of intervention on behavior
and brain functions. Intervention, by itself, aims to affect brain
mechanisms by influencing cognitive functions, leading to a
virtuous circle whereby these changes in brain functions also
impact subsequent cognitive functions. However, transcranial
electrical stimulation (TES) can have a more direct influence on
brain functions and neuroplasticity [14,53] (Box 4).

TES delivers weak electrical currents (e.g., 1–2 mA) via electro-
des, most frequently at the size of 25–35 cm2, which are placed on
the scalp above the brain area that the experimenter is interested
in affecting. When the current is applied over a short duration
(∼20 min), it passes painlessly through the scalp and skull and
alters spontaneous neural activity [26,67].

The recent results obtained from TES experiments offer pro-
mising possibilities for both the cognitive enhancement of normal
abilities and treatment of impairments in different domains
including attention, working memory, numeracy, language, and
executive functions (for reviews see, [14,44,53]).

In the numerical domain, TES positively impacted basic numer-
ical skills, arithmetic training, symbolic learning, and automaticity
[16,42,77]. Notably, some of these studies have found long-lasting
behavioral effects [16], including transfer effect to non-learned
material, and long-lasting efficiency in brain functions in the
stimulated brain region [77] that span 6 months.

Results so far have indicated that stimulation needs to be paired
with cognitive training intervention and that the timing of stimula-
tion with respect to task performance has important effects [82]. In
this regard, when the aim is to improve learning, TES during
intervention yields the most robust results [73,82].

TES is a portable, painless, non-invasive and inexpensive
method. These characteristics increase the likelihood of future
use of TES in different populations outside of the laboratory, in
clinics or in educational institutions [53]. However, currently there
is only a limited amount of work with pediatric populations [53],
which leaves questions as to its safety and efficacy, as well as to
the possible mental cost of cognitive enhancement [42] in this
population.
7. Summary

In this review, we discussed recent approaches to intervention
such as targeted intervention and computer-based intervention, as
well as the effect of intervention on brain functions, and the
possibility in the future in enhancing cognitive training interven-
tion using TES. These approaches and their possible combinations
(Fig. 4) serve as an excellent example for the fruitful synergy
among the fields of psychology, neuroscience, and education;
together, these disciplines can contribute to optimal designs for
intervention targeting neurocognitive mechanisms, and can
furthermore evaluate the efficacy of such interventions at the
behavioral and brain levels. As with any new development, some
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of the interventions are still at an early stage. E.g., some studies
might have involved relatively small, non-random samples, or did
not include control groups (see Table 1 for a summary of the
studies in this review). However, as we described here there is
increasing evidence for the effectiveness, in the short- and even
long-term, of some interventions, including transfer effect to non-
trained material (Table 1) that is sometimes lacking in interven-
tions (Box 5). While much work is still needed and outstanding
questions need to be answered (Box 5), the current review
provides an example of the potential for improving and optimizing
intervention for learning difficulties.
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